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Today’s objectives 

Review IT MACs


Construct maliciously secure garbling
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Setting General-Purpose Tools

Primitives
Oblivious Transfer
Pseudorandom functions/encryption
Commitments

GMW Protocol
Multi-party
Multi-round

Semi-honest Security

Malicious Security

Zero Knowledge

Garbled Circuit
Constant Round
Two Party

Previously
Today

ORAM
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⊕

⊕
∧

Garbler Evaluator

(OT)
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⊕

⊕
∧
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⊕

⊕
∧

Garbler Evaluator

The output is 1



…
A protocol  securely realizes a functionality  in the presence of a 
malicious (with abort) adversary if for every real-world adversary  

corrupting party , there exists an ideal-world adversary  (a 
simulator) such that for all inputs  the following holds: 

Π f
𝒜

i 𝒮i
x, y

RealΠ𝒜(x, y) ≈ Idealf
𝒮i

(x, y)

Ensemble of outputs of each party

Malicious Security (with abort)
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Enc(K0
a , Enc(K0

b , K0
c ))

Enc(K0
a , Enc(K1

b , K0
c ))

Enc(K1
a , Enc(K0

b , K0
c ))

Enc(K1
a , Enc(K1

b , K1
c ))

Garbler

Why can’t we simulate G?

G can encrypt each gate freely


E has no way to tell if gate it 
correctly garbled
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Enc(K1
a , Enc(K1
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c ))

Garbler

Why can’t we simulate G?

G can encrypt each gate freely


E has no way to tell if gate it 
correctly garbled
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Cut and Choose

Garbler Evaluator

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ
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Cut and Choose

Ĉ

Garbler Evaluator

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ
If any opened GC are 
ill-formed, E aborts
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Cut and Choose

Ĉ

Garbler Evaluator

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ

Ĉ If all opened GC are 
well-formed, parties 
continue
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Cut and Choose

Ĉ

Garbler Evaluator

Ĉ

Ĉ

Ĉ

Ĉ

Parties evaluate 
remaining GCs, and E 
obtains outputs from 
each GC
Now what?
Evaluator takes 
majority output
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IT MAC

Bob Alice

μ ∈ {0,1}λ

a ∈ {0,1}

Authenticator
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IT MAC

Bob Alice

μ ∈ {0,1}λ

a ∈ {0,1}

A ∈ {0,1}λ
A ⊕ a ⋅ μ A
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IT MAC

Bob Alice

μ ∈ {0,1}λ

a ∈ {0,1}

A ∈ {0,1}λ
A ⊕ a ⋅ μ A

a, A ⊕ a ⋅ μ
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IT MAC

Bob Alice

μ ∈ {0,1}λ

a ∈ {0,1}

A ∈ {0,1}λ
A ⊕ a ⋅ μ A

¬a, R

To open an incorrect value, Bob must guess μ
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IT MAC

Bob Alice

μ ∈ {0,1}λ

a ∈ {0,1}

A ∈ {0,1}λ
A ⊕ a ⋅ μ A

⟨A ⊕ a ⋅ μ, A⟩ ⊕ ⟨B ⊕ b ⋅ μ, B⟩ = ⟨(A ⊕ B) ⊕ (a ⊕ b) ⋅ μ, A ⊕ B⟩

IT MACs are linearly homomorphic

[a ⋅ μ] ⊕ [b ⋅ μ] = [(a ⊕ b) ⋅ μ]
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Crucial Insight: use information-theoretic 
MACs on each wire so that GC can reveal 

internal values to E.

E can tell if a the revealed value is corrupted.

Authenticated Garbling

gate

{{x}}
{{y}}

{{z}}Encoding of 

(Described later)

x
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Authenticated Garbling

Just like classic GC, gate-by-gate evaluation in constant rounds

XOR AND

However, the technique prevents G from cheating
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Crucial Insight: add a mechanism by GC can 
reveal internal values to E.


E can tell if a the revealed value is corrupted.

Authenticated Garbling

gate

{{x}}
{{y}}

{{z}}Encoding of 
x
G E
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Crucial Insight: add a mechanism by GC can 
reveal internal values to E.


E can tell if a the revealed value is corrupted.

Authenticated Garbling

gate

{{x}}
{{y}}

{{z}}Encoding of 
x
G E

If G tries to corrupt the GC, 
then E will notice z is ill-formed 
with overwhelming probability
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Authenticated Garbling

{{x}}

G E
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Authenticated Garbling

{{x}}

G E

Δ $← {0,1}λ μ $← {0,1}λ

Key Authenticator
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Authenticated Garbling

{{x}}

G E

Δ $← {0,1}λ μ $← {0,1}λ

Key Authenticator

{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩
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Authenticated Garbling

{{x}}

G E

Δ $← {0,1}λ μ $← {0,1}λ

Key Authenticator

{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

X ∈ {0,1}2λ+1
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Authenticated Garbling

{{x}}

G E

Δ $← {0,1}λ μ $← {0,1}σ

Key Authenticator

{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

Key part
Authenticator part

Value part

X ∈ {0,1}2λ+1
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Authenticated Garbling

{{x}}

G E

Δ $← {0,1}λ μ $← {0,1}σ

Key Authenticator

{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

Key part
Authenticator part

Value part
Secret-share of parts

X ∈ {0,1}2λ+1
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Authenticated Garbling

{{x}} = [x ⋅ Δ, x ⋅ μ, x]

G E{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

Key part
Authenticator part

Value part

Δ $← {0,1}λ
μ $← {0,1}λ
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Authenticated Garbling

G E{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

Key part
Authenticator part

Value part

{{x}} = [x ⋅ Δ, x ⋅ μ, x]

open authenticator, value

Δ $← {0,1}λ

x ⋅ μ, x

μ $← {0,1}λ
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Authenticated Garbling

G E{{x}} = ⟨X, {X if x = 0
X ⊕ (Δ, μ,1) if x = 1⟩

Key part
Authenticator part

Value part

{{x}} = [x ⋅ Δ, x ⋅ μ, x]

open authenticator, value

Δ $← {0,1}λ

x ⋅ μ, x

G cannot flip bit, because 
G does not know μ

μ $← {0,1}λ



36

Authenticated Garbling

G E
Δ $← {0,1}λ

XOR

{{x}}
{{y}}

{{x ⊕ y}}

XOR gates are “free”

{{x}} = [x ⋅ Δ, x ⋅ μ, x]
{{y}} = [y ⋅ Δ, y ⋅ μ, y]

{{x ⊕ y}} = [(x ⊕ y) ⋅ Δ, (x ⊕ y) ⋅ μ, (x ⊕ y)]

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

AND

{{x}}
{{y}}

{{x ⋅ y}}

Suppose G and E have access to a doubly 
authenticated multiplication triple

{{α}}, {{β}}, {{α ⋅ β}}

where α, β $← {0,1}
μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}
Observe: (x ⊕ α) ⋅ y ⊕ (y ⊕ β) ⋅ α ⊕ α ⋅ β = x ⋅ y

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

x ⊕ α

⟨X, X ⊕ x ⋅ Δ⟩ = keyPart({{x ⊕ α}})
⟨Y, Y ⊕ y ⋅ (Δ, μ,1)⟩ = {{y}}

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

x ⊕ α

⟨X, X ⊕ x ⋅ Δ⟩ = keyPart({{x ⊕ α}})
⟨Y, Y ⊕ y ⋅ (Δ, μ,1)⟩ = {{y}}

Enc(X, Z)
Enc(X ⊕ Δ, Y ⊕ Z)

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

x ⊕ α

⟨X, X ⊕ x ⋅ Δ⟩ = keyPart({{x ⊕ α}})
⟨Y, Y ⊕ y ⋅ (Δ, μ,1)⟩ = {{y}}

Enc(X, Z)
Enc(X ⊕ Δ, Y ⊕ Z) Garbled Circuit

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

x ⊕ α

⟨X, X ⊕ (x ⊕ α) ⋅ Δ⟩ = keyPart({{x ⊕ α}})
⟨Y, Y ⊕ y ⋅ (Δ, μ,1)⟩ = {{y}}

Enc(X, Z)
Enc(X ⊕ Δ, Y ⊕ Z) {Z if x ⊕ α = 0

Z ⊕ y ⋅ (Δ, μ,1) otherwise
μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{α}}, {{β}}, {{α ⋅ β}}, {{x}}, {{y}}

where α, β $← {0,1}

HALF-AND

{{x ⊕ α}}
{{y}}

{{(x ⊕ α) ⋅ y}}

x ⊕ α

⟨X, X ⊕ (x ⊕ α) ⋅ Δ⟩ = keyPart({{x ⊕ α}})
⟨Y, Y ⊕ y ⋅ (Δ, μ,1)⟩ = {{y}}

Enc(X, Z)
Enc(X ⊕ Δ, Y ⊕ Z) {Z if x ⊕ α = 0

Z ⊕ y ⋅ (Δ, μ,1) otherwise

No opportunity for 
selective abort

μ $← {0,1}λ



45

Authenticated Garbling

G E
Δ $← {0,1}λ

AND

{{x}}
{{y}}

{{x ⋅ y}}

{{(x ⊕ α) ⋅ y}}
{{(y ⊕ β) ⋅ α}}
{{α ⋅ β}}

} half gates

⨁
{{x ⋅ y}}

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{r}} = [r ⋅ Δ, r ⋅ μ, r]E input wire

Open authenticator part, value part

r ⊕ x
r ⋅ μ, r

x

(r ⊕ x)Δ
μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{r}} = [r ⋅ Δ, r ⋅ μ, r]
G input wire

x

Open key part, value part

r ⊕ x

r ⋅ Δ, r

{{x}} = [x ⋅ Δ, x ⋅ μ, x] μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

{{x}} output wire

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

ANDXOR

E input wire

G input wire

output wire

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

Is this an easier problem?

Suppose G and E have access to a doubly 
authenticated multiplication triple

{{α}}, {{β}}, {{α ⋅ β}}

where α, β $← {0,1}

Preprocessing Functionality

μ $← {0,1}λ



51

Authenticated Garbling

G E
Δ $← {0,1}λ

Suppose G and E have access to a doubly 
authenticated multiplication triple

{{α}}, {{β}}, {{α ⋅ β}}

where α, β $← {0,1}

Is this an easier problem?

Yes!

  Random bits only; not dependent on inputs

  Can be computed all at once; no circuit topology

Preprocessing Functionality

μ $← {0,1}λ
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Authenticated Garbling

G E
Δ $← {0,1}λ

Suppose G and E have access to a doubly 
authenticated multiplication triple

{{α}}, {{β}}, {{α ⋅ β}}

where α, β $← {0,1}

Is this an easier problem?

How do parties implement this?

  Somewhat complicated, but basically they use cut and choose!

Preprocessing Functionality

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garble

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garbled Circuit

Garble

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garbled Circuit

Set E’s input

Garble

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garbled Circuit

Set E’s input

Set G’s input
Garble

μ $← {0,1}λ



G E
Δ $← {0,1}λ

ℱpre

Doubly authenticated multiplication triples

Garbled Circuit

Set E’s input

Set G’s input
Garble Evaluate

μ $← {0,1}λ



Constant round protocol secure 
against malicious adversaries for 

arbitrary Boolean circuits

Used doubly-authenticated 
multiplication triples to allow E to check 
values are well-formed, prevent G from 

performing selective abort attack

Doubly-authenticated multiplication 
triples can be efficiently constructed 

using multiplication triples



Today’s objectives 

Review IT MACs


Construct maliciously secure garbling


