Malicious Garbled Circuits

CS 598 DH

Today's objectives

Review IT MACs
Construct maliciously secure garbling

Setting

Semi-honest Security

Zero Knowledge

General-Purpose Tools

GMW Protocol
Multi-party
Multi-round

Garbled Circuit
Constant Round
Two Party

Primitives

Oblivious Transfer
Pseudorandom functions/encryption
Commitments
ORAM

Evaluator

Evaluator

Evaluator

999

Malicious Security (with abort)

A protocol Π securely realizes a functionality f in the presence of a malicious (with abort) adversary if for every real-world adversary \mathscr{A} corrupting party i, there exists an ideal-world adversary $\mathcal{S}_{i}(a$ simulator) such that for all inputs x, y the following holds:

Ensemble of outputs of each party

Why can't we simulate \mathbf{G} ?

G can encrypt each gate freely

Garbler

E has no way to tell if gate it correctly garbled
$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{1}\right)\right)$

Why can't we simulate \mathbf{G} ?

G can encrypt each gate freely

Garbler

$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{0}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{0}, K_{c}^{0}\right)\right)$
$\operatorname{Enc}\left(K_{a}^{1}, \operatorname{Enc}\left(K_{b}^{1}, K_{c}^{1}\right)\right)$

E has no way to tell if gate it correctly garbled

Cut and Choose

Garbler
Evaluator

Cut and Choose

Evaluator

If any opened GC are ill-formed, E aborts

Cut and Choose

If all opened GC are well-formed, parties continue

Cut and Choose

Garbler

Evaluator

Parties evaluate remaining GCs, and E obtains outputs from each GC

Now what?
Evaluator takes majority output

$$
a, A \oplus a \cdot \mu
$$

Authenticated Garbling and Efficient Maliciously Secure Two-Party Computation

We propcse a simple anc efficient framework for obtaining efficient constant-round protacols for maicicousy secure two-party computation. Our framework ises a 1 in a single "authenticicated" garbled circuit waich is transmitted and evaiuated.
We also saow how to efficicently instantiate the proprocessing phase by designing a highly optimized version of the TinyOT protocol by Niesen et al. Our overall protccol outperforms existing work in both the single-evecution and amortized settings, with or without preprocessing:
In the sirg.e-execcution setting, cur protocol evaluates an AES circuit with malicious security in
37 ms with an online time of fust 1 ms. Previous work with the best cnilie time (also 1 m) requires 124 ms in totali, previous work with the best total time requires 62 ms (with 14 ms onlir
time time).

- If we amortize the computation over 1024 executions, each AES computation requires just 6.7 ms
with roughly the same online time as above The best previous work in the amortized setting has with roughly the same online time as above. The best previous work in the ancortized setting has
roughly the same tota: time but does not support funcion-Independent preprocessing roughy the same tota time but does not support function-Independent preprocessing.
compared to semi-honost security) is much smaller than previously belioved.

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute an agreed-upon function of their inputs without revealing anything additional to each other. Although originally viewed as impractical protoco.s for generic $2 P \mathrm{PC}$ in the semi-honest setting based on Yao's garbled-circuit protocol [Yac86] Lave
seen tremendous efficency inprovements over the past several years [MNPS04, HEKM11, ZRE15, KS08, seen tremeadous eficiency improveme
KMR14, ALSZ13, BHKR13, PSSW09
While these results are impressive, semi-honest security-which assumes that both parties follow the protocol honestly yet may try to learn additional information from the execution - is clearly not sufficien for all applications. This has motivated researchers to construct protocols achieving the stronger notion of malicious security. One popular approach for designing constant-round malicicusly secure protocols is
to apply the "cut and choose" technique [LP07, sS11, sS13, KSS12, LP11, HKE13, Lin13, Bra13, FJN14, to apply the "cut and choose" technique [LP07, sS11, sS13, KSS12, LP11, HKE13, Lin13, Bra13, FJN14,
AMPR14] to Yao's garbled-circuit protocol. For statistical security $2^{-\rho}$, the best approaches using this paradigm require ρ garbbed circuits (which is optimal); the nuost eficient instan iation of lhis approach, by Wang et al [WMK17], securely evaluates an AES circuit in 62 ms.
The cut-and-choose approach incurs significant overhead when large circuits are evaluated precisely be cause ρ garbled circuits need to be transmitted (typically, $\rho \geq 40$). In order to mitigate this, recent work
have explored secure computation in an amoriized setting where the same function is evaluated multiple time

Optimizing Authenticated Garbling for Faster Sccure 'Two-Party Computation

Jonathan Katz University of Maryland Jketzecs und . edn	Samuel Ranellucci University of Maryland George Mason University	Mike Rosulek Ozegon State University rcsuleknesecs, oregonatete, ed
	Xian Wang University of Maryland wangziaoflce. umd.edu	

October 10,2018

Authenticated Garbling from

Simple Correlations

$$
\begin{aligned}
& { }^{1} \text { Stealth Softuare Technologies, Ine. } \\
& { }^{2} \text { Tcchnion - Irroc Institute of Tochnology } \\
& { }^{3} \text { University of Califoria, Los Angeles }
\end{aligned}
$$

Abstract. We revisit the problem of constant-round malicious sceare namely scorress of correlated randomness that can be sescrely generated with sublinear commurication complexity and zood corcrete afficiency. The current sate-of-he-art protocol of Katze et al. (Crypto 2018) achieves malicious security by realiziug a variant of the culthenicuicuel gurbling
functionality of Wang et al. (CCS 2017). Given oblivilus transfer correlations, the cormunication cost of this protocol (with 40 bits of statistical scourity) is comperable to roughly 10 garbled circuits (CC3). This protocol inherently requites more than 2 rounds of interection.
In this work, we use other kincs of simple correlatiors to realize the authenticated garsing furctionality with better efficiency. Concretely wc get the following reduced oosts in the random oracel moccl:

- Using variants of both vector oblivious linear evaluetion (VOLE) Using variants of ooth vector obivious linear evaluation (VO
and nultiplication triples (MT), we redue the cost to 1.31 GC - Using on'y variants of VOIE, we rethice the cost to 225 GCs . message) protoool with oost comparable to 8 CC .
Finally, we siow that by using recent constructicss of pseudorandom correation geterators (Boyle et al.. CCS 2018, Crypto 2019, 2320), the
simple correlations consumed by our pmotocols can he secirely realized without forming an efficiency bottleneck.

Authenticated Garbling

Crucial Insight: use information-theoretic MACs on each wire so that GC can reveal internal values to E .
E can tell if a the revealed value is corrupted.

Authenticated Garbling

Just like classic GC, gate-by-gate evaluation in constant rounds

However, the technique prevents G from cheating

Authenticated Garbling

Crucial Insight: add a mechanism by GC can reveal internal values to E .

E can tell if a the revealed value is corrupted.

G

E

Authenticated Garbling

Crucial Insight: add a mechanism by GC can reveal internal values to E .
 E can tell if a the revealed value is corrupted.

G

If G tries to corrupt the GC, then E will notice z is ill-formed with overwhelming probability

Authenticated Garbling

E

Authenticated Garbling

$$
\Delta \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
$$

$$
\mu \$\{0,1\}^{\lambda}
$$

Authenticated Garbling

G

$$
\{x\}=\left\langle X,\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
$$

E

Authenticated Garbling

$$
\begin{aligned}
& X \in\{0,1\}^{2 \lambda+1} \\
& \quad\{x\}\}=\left\langle X,\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
\end{aligned}
$$

Authenticated Garbling

Key

$$
\Delta \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}
$$

$$
\mu \stackrel{\$}{\leftarrow}\{0,1\}^{\sigma}
$$

$$
\begin{aligned}
& X \in\{0,1\}^{2 \lambda+1} \\
& \quad\{x\}=\left\langle X,\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
\end{aligned}
$$

Authenticated Garbling

Key

$$
X \in\{0,1\}^{2 \lambda+1}
$$

$$
\{x\}=\left\langle\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
$$

Secret-share of parts

Authenticated Garbling

$$
\{x\}\}=[x \cdot \Delta, x \cdot \mu, x]
$$

$$
\|x\|=\left\langle X,\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
$$

E
$\mu \stackrel{\&}{\&}\{0,1\}^{\lambda}$

Authenticated Garbling Q
 $$
\{\{x\}=[x \cdot \Delta, x \cdot \mu, x]
$$

open authenticator, value

$$
x \cdot \mu, x
$$

$$
\{x\}=\left\langle X,\left\{\begin{array}{ll}
X & \text { if } x=0 \\
X \oplus(\Delta, \mu, 1) & \text { if } x=1
\end{array}\right\rangle\right.
$$

Authenticated Garbling

$$
\{\{x\}=[x \cdot \Delta, x \cdot \mu, x]
$$

G cannot flip bit, because G does not know μ

$$
x \cdot \mu, x
$$

Value part
Key part Authenticator part

Authenticated Garbling

XOR gates are "free"

$$
\begin{gathered}
\{x\}\}=[x \cdot \Delta, x \cdot \mu, x] \\
\{y\}\}=[y \cdot \Delta, y \cdot \mu, y] \\
\{x \oplus y\}\}=[(x \oplus y) \cdot \Delta,(x \oplus y) \cdot \mu,(x \oplus y)]
\end{gathered}
$$

$$
\Delta \stackrel{\$ \mathbf{G}}{\leftarrow}\{0,1\}^{\lambda}
$$

$\mu \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$

Authenticated Garbling

Suppose G and E have access to a doubly authenticated multiplication triple

$$
\begin{aligned}
& \Delta \stackrel{\$ \mathbf{G}}{\leftarrow}\{0,1\}^{\lambda} \\
& \{\alpha\},\{\beta\},\{\alpha \alpha \cdot \beta\} \\
& \text { where } \alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}
\end{aligned}
$$

Authenticated Garbling

$\{\alpha\},\{\{\beta\},\{\alpha \alpha \cdot \beta\},\{x\},\{y\}\}$
where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$
Observe: $(x \oplus \alpha) \cdot y \oplus(y \oplus \beta) \cdot \alpha \oplus \alpha \cdot \beta=x \cdot y$

E
$\mu \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$

Authenticated Garbling

$\{\alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\},\{y\}$
where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$\Delta \underset{\&}{\&}$

Authenticated Garbling

$\{\alpha \alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\}\},\{\{y\}\}$
 where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$$
\begin{aligned}
& \langle X, X \oplus x \cdot \Delta\rangle=\operatorname{keyPart}(\{x \oplus \alpha\}) \\
& \langle Y, Y \oplus y \cdot(\Delta, \mu, 1)\rangle=\{y y\}
\end{aligned}
$$

$$
\Delta \stackrel{\$ \mathbf{G}}{\stackrel{\mathbf{G}}{\leftarrow}\{0,1\}^{\lambda}}
$$

Authenticated Garbling

$\{\alpha \alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\}\},\{\{y\}\}$
 where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$$
\begin{aligned}
& \langle X, X \oplus x \cdot \Delta\rangle=\operatorname{keyPart}(\{x \oplus \alpha\}) \\
& \langle Y, Y \oplus y \cdot(\Delta, \mu, 1)\rangle=\{y y\}
\end{aligned}
$$

$\Delta \stackrel{\$ \mathbf{G}}{\leftarrow}\{0,1\}^{\lambda}$

$\operatorname{Enc}(X, Z)$
$\operatorname{Enc}(X \oplus \Delta, Y \oplus Z)$

E

$\mu \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$
$x \oplus \alpha$

Authenticated Garbling

$\{\alpha \alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\}\},\{\{y\}\}$
 where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$$
\begin{aligned}
& \langle X, X \oplus x \cdot \Delta\rangle=\operatorname{keyPart}(\{x \oplus \alpha\}) \\
& \langle Y, Y \oplus y \cdot(\Delta, \mu, 1)\rangle=\{y y\}
\end{aligned}
$$

$\Delta \stackrel{\Phi}{\leftarrow}\{0,1\}^{\lambda}$
$\operatorname{Enc}(X, Z)$
$\operatorname{Enc}(X \oplus \Delta, Y \oplus Z)$

Garbled Circuit

Authenticated Garbling

$\{\{\alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\}\},\{\{y\}\}$
 where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$$
\begin{aligned}
& \langle X, X \oplus(x \oplus \alpha) \cdot \Delta\rangle=\operatorname{keyPart}(\{x \oplus \alpha\}) \\
& \langle Y, Y \oplus y \cdot(\Delta, \mu, 1)\rangle=\{\{y\}\}
\end{aligned}
$$

$\Delta \stackrel{\Phi}{\leftarrow}\{0,1\}^{\lambda}$

$\operatorname{Enc}(X, Z)$
$\operatorname{Enc}(X \oplus \Delta, Y \oplus Z)$

E

$\mu \underset{\substack{\$ \\ x \oplus \alpha}}{\stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}}$

Authenticated Garbling

$$
\{\alpha \alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\},\{\{x\},\{\{y\}\}
$$ where $\alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}$

$$
\begin{aligned}
& \langle X, X \oplus(x \oplus \alpha) \cdot \Delta\rangle=\operatorname{keyPart}(\{x \oplus \alpha\}) \\
& \langle Y, Y \oplus y \cdot(\Delta, \mu, 1)\rangle=\{\{y\}\}
\end{aligned}
$$

$\Delta \Phi^{\Phi} \underset{\{0,1\}^{\lambda}}{\mathbf{G}}$

$\operatorname{Enc}(X, Z)$
$\operatorname{Enc}(X \oplus \Delta, Y \oplus Z)$
$\left\{\begin{array}{llc}Z & \text { if } x \oplus \alpha=0 & \mu \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda} \\ Z \oplus y \cdot(\Delta, \mu, 1) & \text { otherwise } & x \oplus \alpha\end{array}\right.$

Authenticated Garbling

$$
\Delta \stackrel{\$ \mathbf{G}}{\leftarrow}\{0,1\}^{\lambda}
$$

Authenticated Garbling

E input wire

- $\{r\}=[r \cdot \Delta, r \cdot \mu, r]$

Open authenticator part, value part
$\Delta \stackrel{\Phi}{\leftarrow} \underset{\{0,1\}^{\lambda}}{\mathbf{G}}$

$$
r \cdot \mu, r
$$

Authenticated Garbling

G input wire $\quad\{r r\}=[r \cdot \Delta, r \cdot \mu, r]$

Authenticated Garbling

$\xrightarrow{\{\{x\}}$ Output wire

$$
\Delta \underset{{ }^{\$} \mathbf{G}}{\leftarrow}\{0,1\}^{\lambda}
$$

Authenticated Garbling

G input wire

Authenticated Garbling
 Preprocessing Functionality

Suppose G and E have access to a doubly authenticated multiplication triple

$$
\begin{gathered}
\{\alpha \alpha\},\{\beta \beta\},\{\{\alpha \cdot \beta\} \\
\text { where } \alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}
\end{gathered}
$$

Is this an easier problem?

Authenticated Garbling
 Preprocessing Functionality

Suppose G and E have access to a doubly authenticated multiplication triple

$$
\begin{gathered}
\{\alpha \alpha\},\{\{\beta\},\{\{\alpha \cdot \beta\} \\
\text { where } \alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}
\end{gathered}
$$

Is this an easier problem?

Random bits only; not dependent on inputs Can be computed all at once; no circuit topology

Authenticated Garbling
 Preprocessing Functionality

Suppose G and E have access to a doubly authenticated multiplication triple

$$
\begin{gathered}
\{\alpha\}\},\{\beta \beta\},\{\{\alpha \cdot \beta\} \\
\text { where } \alpha, \beta \stackrel{\$}{\leftarrow}\{0,1\}
\end{gathered}
$$

Is this an easier problem?

How do parties implement this?
Somewhat complicated, but basically they use cut and choose!

$$
\mu \stackrel{\$}{\&}\{0,1\}^{\lambda}
$$

 Abstract
We propcse a simple and efficient framework for obtaining efficient constant-round protscols for phase to generate authenticated information. Our framework uses a function-independent preprocessln a single "authenticated" garbled circuit wiich is transmitted and evauated.
We also show how to efficiently instantiate the preprocessing phase by designing a highly optimized version of the TinyOT protocil by Nielsen et al. Our overall protocol outperiorms existing work in b
the singleexecution and amortized settings, with or without preprocessing the single-evecution and amortized settings, with or without preprocessing:
In the sirg.e-execution setting, cur protocol evaluates an AES circuit with malicious security
37 ms with an online time of just 1 ms. Previous work with the best cnlire time (also 1 ms) requires 124 ms in total; previous work with the best total time requires 62 ms (with 14 ms onlir time).

- If we amortize the computation over 1024 executlons, each AES computation requires just 6.7 ms
with roughly the same online time as above The best previous work in the amortized setting has with roughly the same onine time as above. The best previous work in the amortized
roughly the same tota time but does not support function-lndependent preprocessing.

```
paty tor miously secure two-party computation (as
```

compared to semi-honest seeurity) is much smaller than previously believed.

1 Introduction
Protocols for secure two-party computation (2PC) allow two parties to compute an agreed-upon function of their inputs without revealing anything additional to each other. Although originally viewed as impractical protoco.s for generic 2PC in the semi-honest settirg based on Yao's garbled-circuit protocol [Yao8bi] have KMR14, ALSZ13, BHKR13, PSSW09.
While these results are impressive, semi-honest security-which assumes that both parties follow the protocol honestly yet may try to learn additional information from the execution - is clearly not sufficien for all applications. This has motivated researchers to construct rrotocols achieving the stronger notion of malicious security. One popular approach for designing constant-round malicicusly secure protocols is
to apply the "cut and choose" technique [LP07, sS11, SS13, KSS12, LP11, HKE13, Lin13, Bra13, FJN14 to apply the "cut and choose" tecannque (LPOT,
AMPR14] to Yao's garbled-circuit protocol. For statistical security $2^{-\rho}$, the best approaches using this paradign require ρ garbled circuits (which is optimal); the most eficient instanliation of (his approach, by Wang et al. [WMK17], securely evaluates an AES circuit in 62 ms .
The cut-and-choose apprach incurs significant overead when
The cut-and-choose approach incurs significant overhead when large circuits are evaluated precisely be
cause ρ garbled circuits need to be transmitted (typically, $\rho \geq 40$). In order to mitigate this, recent works cause ρ garbled circuits need to be transmitted (typically, $\rho \geq 40$). In order to mitigate this, recent works
have explored secure computation in an amoriized setting where the same function is evaluated multiple times

Constant round protocol secure against malicious adversaries for arbitrary Boolean circuits

Used doubly-authenticated multiplication triples to allow E to check values are well-formed, prevent G from performing selective abort attack

Doubly-authenticated multiplication triples can be efficiently constructed using multiplication triples

Today's objectives

Review IT MACs
Construct maliciously secure garbling

